10C PooledT

Contents

\mathbf{C}	Poo	ed T-test	
	C.1	Pooled T-test	
		Pooled T-test	

Textbook: Devore 8e

[ToC]

Test Statistic for t-test

$$z = \frac{\bar{X} - \bar{Y} - \Delta_0}{\sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}}$$

 S_1 is estimating σ_1 , and S_2 is estimating σ_2 .

What if $\sigma_1 = \sigma_2$, but are still unknown?

C.1 Pooled T-test

Test Statistic for t-test

$$z = \frac{\bar{X} - \bar{Y} - \Delta_0}{\sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}}$$

 S_1 is estimating σ_1 , and S_2 is estimating σ_2 .

What if $\sigma_1 = \sigma_2$, but are still unknown?

 \Rightarrow They should be estimated by the same estimator S_p .

C.2 Pooled T-test

$$z = \frac{\bar{X} - \bar{Y} - \Delta_0}{\sqrt{\frac{S_p^2}{n_1} + \frac{S_p^2}{n_2}}}$$

$$= \frac{\bar{X} - \bar{Y} - \Delta_0}{S_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$$

where S_p is sample standard deviation pooled sample.

- If assumption of $\sigma_1 = \sigma_2$ are correct, then has slightly higher power than regular t-test.
- It was somewhat popular back then, but it is not a recommended procedure now.