1A What Is Stats?

Contents

1AWhat is Statistics?				
A.1	Statistics is the discipline of data			
A.2	Descriptive and Inferential Statistics			
A.3	Descriptive and Inferential Statistics			
A.4	Population, Sample, and SRS			
A.5	Probability Theory			
A.6	Ex 1.8 Concrete filled H-beam			
A.7	Ex 1.2 Rolls of Wallpaper			

1A What is Statistics?

[ToC]

A.1 Statistics is the discipline of data

• Statistics is the discipline that concerns the collection, organization, analysis, interpretation and presentation of data.

• Statistics is not a subcategory of Math. It just uses Math. Engineers also use Math, but that doesn't make Engineering subcategory of Math.

• Probability Theory is a subcategory of Math.

A.2 Descriptive and Inferential Statistics

- Descriptive Statistics: Summarize and describe important feasure of the data.
 - Ch1 (only)
- Probability Theory
 - Ch 2,3,4
- Inferential Statistics: Tries to generalizes the information gained from a sample to a population.
 - Ch5,6,7,8
 - Parameter estimation, Prediction

Inferential Statistics uses Probability Theory backwards.

A.3 Descriptive and Inferential Statistics

A.4 Population, Sample, and SRS

- **Population:** The body of interest.
- Sample: A subset of population chosen in some "ramdom" manner.
- Data: Collection of facts, numbers, and measurements.

We collect **Sapmple** to infer about **Population**.

A.5 Probability Theory

A.6 Ex 1.8 Concrete filled H-beam

An article reported the results of cyclic loading tests on concrete filled tubular (CFT) column to H-beam welded connections. 75 test specimens were loaded until failure. Some failures occurred at the welded joint; others occurred through buckling in the beam itself. For each specimen, the location of the failure was recorded, along with the torque applied at failure in kilonewton-meters. The results for the first five specimens were as follows:

	Torque	Failure
Specimen	$(kN \cdot m)$	Location
1	165	Weld
2	237	Beam
3	222	Beam
4	255	Beam
5	194	Weld
<u>:</u>	:	:

A.7 Ex 1.2 Rolls of Wallpaper

A quality engineer at a factory that produces rolls of wallpaper wants to ensure each day, that the percentage of rolls with flaws in the printing is less than 9%. She decides to draw a sample of 100 rolls of wallpaper from a day's production. Within the sample, 7 rolls are found to have flaws in the printing.

