4B Normal

Contents

В	BNormal Distribution						
	B.1	Normal Distribution					
	B.2	TI-84 for Normal(μ, σ)					
	B.3	$N(\mu=0,\sigma=1), N(\mu=0,\sigma=2)$ and $N(\mu=2,\sigma=2)$					
	B.4	Empirical Rule					
	B.5	$N(\mu=5,\sigma^2=3^2)$					
	B.6	Standard Normal Distribution					
	B.7	z_{α} Notation					
	B.8	Using Normal Table					
	B.9	Standardization of Normal:					
	B.10	Use Standardization to find $F(x)$					
		Example: Tree Height					
	B.12	Finding percentile of $N(\mu, \sigma^2)$					
	B.13	Ex: Find Percentile					
	B.14	Ex: Find Percentile 2					
	B.15	5 Ex: Tree Height 2					
	B.16	Ex: Cereal Box					
	B.17	Normal Approximation of Binomial					

3B Normal Distribution

[ToC]

B.1 Normal Distribution

• pdf for $N(\mu, \sigma^2)$

$$f(x) = \frac{1}{\sqrt{2\pi}\sigma}e^{-(x-\mu)^2/2\sigma^2}$$

• CDF

$$F(X) = P(X \le x) = \int_{-\infty}^{x} f(t)dt$$

but this is analytically non-tractable, and must be evaluated numerically. We have a table for the case $(\mu, \sigma^2) = (0, 1)$.

• Mean and Variance

$$E(X) = \mu$$
 $V(X) = \sigma^2$

B.2 TI-84 for Normal(μ, σ)

```
2nd -> VARS (Same as DISR)

normalpdf(x, mu, sigma) # f(x)
normalcdf(a, b, mu, sigma) # F(b) - F(a)
invNormal(p, mu, sigma) # F(x) = p
```

B.3 $N(\mu = 0, \sigma = 1), N(\mu = 0, \sigma = 2) \text{ and } N(\mu = 2, \sigma = 2)$

B.4 Empirical Rule

In $X \sim N(\mu, \sigma^2)$, then

- 1. with probability .68, X is within 1 SD away from μ .
- 2. with probability .95, X is within 2 SD away from μ .
- 3. with probability .99.7, X is within 3 SD away from μ .

```
x \leftarrow seq(-7,17,.01)
plot(x, dnorm(x, 5, 3), type="1", ylim=c(0,.4))
```

B.5 $\mathbf{N}(\mu = 5, \sigma^2 = 3^2)$

B.6 Standard Normal Distribution

- N(0,1) is called Standard Normal Distribution.
- Pdf of standard normal distribution is

$$f(x) = \frac{1}{\sqrt{2\pi}}e^{-x^2/2}$$

• CDF

$$F(t) = P(Z \le t) = \Phi(t).$$

• Table A.3 in the textbook lists values of $\Phi(t)$.

B.7 z_{α} Notation

- ullet Z is used to denote Standard Normal random variable.
- z_{α} denotes $(1-\alpha)100$ th percentle of Z.
- i.e. $z_{.05} = [95$ th percentile of Z]

B.8 Using Normal Table

- Find $P(Z \le 1.4)$
- Find P(Z > .53)
- \bullet Find 90th percentile of Z
- Find $Z_{.05}$

B.9 Standardization of Normal:

$$X \sim N(\mu, \sigma^2)$$

$$Z \sim N(0, 1)$$

$$Z = \frac{X - \mu}{\sigma} \implies$$

$$\iff X = \mu + Z\sigma$$

B.10 Use Standardization to find F(x)

Using standardization, you can use $\Phi(\cdot)$ to figure out the cdf of X.

$$P(X \le a) = P\left(\frac{X - \mu}{\sigma} \le \frac{a - \mu}{\sigma}\right) = \Phi\left(\frac{a - \mu}{\sigma}\right)$$

Find $P(X \le 8)$ in $N(5, 3^2)$.

$$P(a \le X \le b) = P(X \le b) - P(X \le a) = \Phi\left(\frac{b-\mu}{\sigma}\right) - \Phi\left(\frac{a-\mu}{\sigma}\right)$$

 $P(X > a) = 1 - P(X \le a) = 1 - \Phi\left(\frac{a - \mu}{\sigma}\right)$

- $P(X \ge a)$
- ()
- \bullet P(X=a)

B.11 Example: Tree Height

Diameter at breast height (in.) of trees of certain type is normally distributed with $\mu = 8.8$ and $\sigma = 2.8$.

- 1. What is probability that randomly chosen tree has diameter less than 10in?
- 2. What is probability that randomly chosen tree has diameter greater than 20in?
- 3. What is probability that randomly chosen tree has diameter between 5 and 15?
- 4. What is range of diameter represents the middle 68% of the trees?

$X \sim N(8.8, 2.8^2)$

What is probability that randomly chosen tree has diameter greater than 20in?

$X \sim N(8.8, 2.8^2)$

What is probability that randomly chosen tree has diameter between 5 and 15?

$X \sim N(8.8, 2.8^2)$

What is range of diameter represents the middle 68% of the trees?

B.12 Finding percentile of $N(\mu, \sigma^2)$

Find 90th percentile of $N(5, 3^2)$.

B.13 Ex: Find Percentile

Suppose X is Normal random variable with $\mu = 5$ and $\sigma = 2$. What is the 70th percentile of X?

B.14 Ex: Find Percentile 2

Suppose X is a Normal random variable with μ and $\sigma = 2$. For what value of μ , the 70th percentile of X equal to 3.5?

B.15 Ex: Tree Height 2

Diameter at breast height (in.) of trees of certain type is normally distributed with $\mu = 8.8$ and $\sigma = 2.8$.

- 1. To protect younger tree from being cut, we want to ban cutting of smallest 70% of the trees. For what diameters should we ban the cutting?
- 2. For what value of c does interval $(8.8 \pm c)$ contain 95% of diameters?

B.16 Ex: Cereal Box

Cereal box is being filled at a factory. Box says it contains 32oz. Let the machine to have $\sigma^2 = 2$ and define [underfilled] as Box< 30, [overfilled] as Box> 33.

- 1. Determine μ if we want P(underfilled) = .03?
- 2. For that μ , what is P(overfilled)?
- 3. For the same μ , what σ is needed so that P(overfilled) = .05?

2 For that μ , what is P(overfilled)?

3 For the same μ , what σ is needed so that P(overfilled) = .05?

B.17 Normal Approximation of Binomial

• If n is sufficiently large $(np \ge 10 \text{ and } n(1-p) \ge 10)$,

Binomal
$$(n, p) \approx \text{Normal}(np, np(1-p))$$

• Continuity correction of binomial approximation is done by the formula

$$P(X \le x) = \Phi\left(\frac{x + .5 - np}{\sqrt{np(1-p)}}\right).$$