5A RandomSample # Contents | 5ARandom Sampling | | |-------------------|---| | A.1 | Random Sample from $F(x)$ | | A.2 | Back to Sample Mean | | A.3 | How quickly does \bar{X} converge to $E(X)$? | | A.4 | Central Limit Theorem | | A.5 | Ex: Spinning Wheel Game | | A.6 | Proportion of days (profit ≤ 0) | | A.7 | Central Limit Theorem | | A.8 | Ex: | # 5A Random Sampling [ToC] ## A.1 Random Sample from F(x) Random variables X_1, X_2, \dots, X_n are said to be a **random sample** of size n from distribution F if - 1. The X_i 's are independent - 2. Each X_i has distribution(CDF) F(x) (or pdf f(x)). 1st run of the Experiment \rightarrow realization of X_1 2nd run of the Experiment \rightarrow realization of X_2 3rd run of the Experiment \rightarrow realization of X_3 \vdots - 3. $\{X_1 X_2, \dots, X_3\}$ is the dataset. - 4. F is called the population distribution. ## A.2 Back to Sample Mean Roll a die 1000 times and follow \bar{X} . • How quickly does \bar{X} converge to E(X)? # A.3 How quickly does \bar{X} converge to E(X)? Overlay of 100 \bar{X} . #### A.4 Central Limit Theorem • When X_1, \ldots, X_n are random sample from an experiment with mean μ and SD σ , $$\bar{X} \sim N\left(\mu, \frac{\sigma^2}{n}\right)$$ - We can use this information and talk about how accurately \bar{X} estimates μ . - Java Applet http://onlinestatbook.com/stat_sim/sampling_dist/ ### A.5 Ex: Spinning Wheel Game Recall the game of spinning wheel, which customers pay \$1 to play a game, with .005 chance of winning \$100. Let n be a number of customers that you will get per day. - \bar{X} will represent your potential profit (loss) per customer for the day. - E(X) = .5 and V(X) = 49.75. - Let's study the behavior of \bar{X} by simulation study. A.6 Proportion of days (profit ≤ 0) (.390) (.116) (.031) #### A.7 Central Limit Theorem • Law of Large Numbers $$\bar{X} \to E(X)$$ • When X_1, \ldots, X_n are random sample from any distribution, if n is large enough (n > 30), approximately, $$\bar{X} \sim N\left(\mu, \frac{\sigma}{\sqrt{n}}\right)$$ μ and σ are mean and SD of one X. • Use 1 We can use this to see how quickly (slowly) $\bar{X} \to E(X)$ is happening.(probability) • Use 2 We can use this to talk about how accurately \bar{X} estimates μ .(statistics) ### **A.8** Ex: Suppose X_1, \ldots, X_{30} are random sample from mean 5 and sd 4. - What is $P(4.5 \le \bar{X} \le 5.5)$ - For what value of α , $P(\mu \alpha \le \bar{X} \le \mu + \alpha) = .95$?