5A RandomSample

Contents

5ARandom Sampling	
A.1	Random Sample from $F(x)$
A.2	Back to Sample Mean
A.3	How quickly does \bar{X} converge to $E(X)$?
A.4	Central Limit Theorem
A.5	Ex: Spinning Wheel Game
A.6	Proportion of days (profit ≤ 0)
A.7	Central Limit Theorem
A.8	Ex:

5A Random Sampling

[ToC]

A.1 Random Sample from F(x)

Random variables X_1, X_2, \dots, X_n are said to be a **random sample** of size n from distribution F if

- 1. The X_i 's are independent
- 2. Each X_i has distribution(CDF) F(x) (or pdf f(x)). 1st run of the Experiment \rightarrow realization of X_1 2nd run of the Experiment \rightarrow realization of X_2 3rd run of the Experiment \rightarrow realization of X_3 \vdots
- 3. $\{X_1 X_2, \dots, X_3\}$ is the dataset.
- 4. F is called the population distribution.

A.2 Back to Sample Mean

Roll a die 1000 times and follow \bar{X} .

• How quickly does \bar{X} converge to E(X)?

A.3 How quickly does \bar{X} converge to E(X)?

Overlay of 100 \bar{X} .

A.4 Central Limit Theorem

• When X_1, \ldots, X_n are random sample from an experiment with mean μ and SD σ ,

$$\bar{X} \sim N\left(\mu, \frac{\sigma^2}{n}\right)$$

- We can use this information and talk about how accurately \bar{X} estimates μ .
- Java Applet

http://onlinestatbook.com/stat_sim/sampling_dist/

A.5 Ex: Spinning Wheel Game

Recall the game of spinning wheel, which customers pay \$1 to play a game, with .005 chance of winning \$100. Let n be a number of customers that you will get per day.

- \bar{X} will represent your potential profit (loss) per customer for the day.
- E(X) = .5 and V(X) = 49.75.
- Let's study the behavior of \bar{X} by simulation study.

A.6 Proportion of days (profit ≤ 0)

(.390)

(.116)

(.031)

A.7 Central Limit Theorem

• Law of Large Numbers

$$\bar{X} \to E(X)$$

• When X_1, \ldots, X_n are random sample from any distribution, if n is large enough (n > 30), approximately,

$$\bar{X} \sim N\left(\mu, \frac{\sigma}{\sqrt{n}}\right)$$

 μ and σ are mean and SD of one X.

• Use 1

We can use this to see how quickly (slowly) $\bar{X} \to E(X)$ is happening.(probability)

• Use 2 We can use this to talk about how accurately \bar{X} estimates μ .(statistics)

A.8 Ex:

Suppose X_1, \ldots, X_{30} are random sample from mean 5 and sd 4.

- What is $P(4.5 \le \bar{X} \le 5.5)$
- For what value of α , $P(\mu \alpha \le \bar{X} \le \mu + \alpha) = .95$?