6A CI for Mean

Contents

6ASam	ple Mean and Confidence Interval
A.1	Central Limit Theorem
A.2	Three Scenarios
A.3	Confidence Interval for μ
A.4	Ex: Hydro Turbines 1
	One Sided CI
A.6	Ex: Hydro Turbines 2
A.7	Use of CI
A.8	What Confidence means and doesn't mean
A.9	When σ is unkown (n is still > 40)
A.10	Ex: A/C unit lifetime 1

6A Sample Mean and Confidence Interval

[ToC]

A.1 Central Limit Theorem

• When X_1, \ldots, X_n are random sample from an experiment with mean μ and SD σ ,

$$\bar{X} \sim N\left(\mu, \frac{\sigma}{\sqrt{n}}\right)$$

- 1. When $X \sim N(\mu, \sigma)$, then above result is exact, for any n.
- 2. When n > 40, X can have any distribution, and above result holds approximately.

X (each experiment)

 \overline{X}

$$\{X_1, X_2, \dots, X_n\}$$

A.2 Three Scenarios

- 1. When n > 40. (Distribution of X doesn't matter. σ known or not doesn't matter)
- 2. When $n \leq 40$. (X has to be normally distributed)
 - (a) σ is known.
 - (b) σ is unknown and replaced with S.

A.3 Confidence Interval for μ

Suppose your data X_1, \ldots, X_n are Random Sample from distribution A with mean μ and variance σ^2 . Now we know that $\bar{X} \sim N(\mu, \sigma/\sqrt{n})$.

Then we know that

$$P(\bar{X} \text{ is within } \mu \pm z_{\alpha/2} \sigma / \sqrt{n}) = 1 - \alpha$$

Which is same thing as to say

$$P(\mu \text{ is within } \bar{X} \pm z_{\alpha/2} \sigma/\sqrt{n}) = 1 - \alpha.$$

Thus, our $100(1-\alpha)\%$ Confidence Interval for μ is

$$\overline{X} \pm z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$$

A.4 Ex: Hydro Turbines 1

- Old model of hydroelectric miniturbines averages 25.2 Kwatt output under the lab condition.
- Recently the model design was changed, and that supposed to improve the average output.
- Out of 50 units tested, sample mean 27.1, sigma is known to be 7.2.
- Is this result enough to claim the improvement on average?

A.5 One Sided CI

• $100(1-\alpha)\%$ two-sided Confidence Interval for μ is

$$\overline{X} \pm z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}$$

- Take two-sided CI formula, change $\alpha/2$ to α .
- Pick one of the sign for upper-bound or lower-bound.

• 100(1 - $\alpha)\%$ One-sided upper-bound Confidence Interval for μ is

$$\left(-\infty, \quad \overline{X} + z_{\alpha} \frac{\sigma}{\sqrt{n}}\right)$$

• 100(1 – $\alpha)\%$ One-sided lower-bound Confidence Interval for μ is

$$\left(\overline{X}-z_{lpha}rac{\sigma}{\sqrt{n}},\quad\infty
ight)$$

A.6 Ex: Hydro Turbines 2

- Old model of hydroelectric miniturbines averages 25.2 Kwatt output under the lab condition.
- Recently the model design was changed, and that supposed to improve the average output.
- Out of 50 units tested, sample mean 27.1, sigma is known to be 7.2.
- Is this result enough to claim the improvement?

A.7 Use of CI

- 1. Want to show statistical evidence that $\mu = \mu_0$ is not plausible. If μ_o is not in CI, then reject.
- 2. Want to show statistical evidence that $\mu = \mu_0$ is plausible. Must have CI reasonably small, then show that μ_0 is still in CI.
- 3. Want to show statistical evidence that $\mu > \mu_0$. Calculate lower-bound CI, and show that it's above μ_0 .
- 4. Want to show statistical evidence that $\mu < \mu_0$. Calculate upper-bound CI, and show that it's above μ_0 .

A.8 What Confidence means and doesn't mean

So what is the

 $P(\text{ true average output is between } (25.1\ 29.1))$

A.9 When σ is unknwn (n is still > 40)

Since we have N > 40 in this case, we just replace σ in the formula with S.

A.10 Ex: A/C unit lifetime 1

- Sample of 60 units have averaged in 3.72 years and standard deviation of 4.17.
- Calculate 95% two-sided lower-bound CI for true average lifetime.
- Calculate 95% one-sided lower-bound CI for true average lifetime.
- Is this an evidence that true average lifetime is more than 3 years?
- Is this an evidence that true average lifetime is more than 2.5 years?