6D Summary

Contents

6DSummary and Formulas	
D.1	Sampling distribution of sample mean
D.2	Confidence Interval
D.3	Sample Variance

6D Summary and Formulas

[ToC]

D.1 Sampling distribution of sample mean

• If X_i are random sample from normal distribution with mean μ and SD σ ,

$$\bar{X} \sim N(\mu, \sigma^2/n)$$

- If n > 40, then above is approximately true even if it is not from the normal distribution. (e.g. Exponential Distribution)
- If np > 10 and n(1-p) > 10 are both true, same goes for proportion estimator

$$\bar{X} = \hat{p} \sim N(\mu, \sigma^2/n) = N(p, p(1-p)/n)$$

D.2 Confidence Interval

• Above result leads to $100(1-\alpha)\%$ two-sided Confidence Interval for μ ,

$$\bar{X} \pm z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}$$

• And $100(1-\alpha)\%$ two-sided Confidence Interval for p,

$$\hat{p} \pm z_{\frac{\alpha}{2}} \frac{p(1-p)}{\sqrt{n}}$$

- If σ is not known, replace with sample standard deviation S, and change $z_{\frac{\alpha}{2}}$ to $t_{\frac{\alpha}{2},n-1}$.
- For one-sided upper- or lower-bound CI, pick + or sign, and change $\frac{\alpha}{2}$ to α .

D.3 Sample Variance

• Sampling distribution of the sample variance

$$(n-1)S^2/\sigma^2 \sim \chi^2(n-1)$$

• $100(1-\alpha)\%$ two-sided Confidence Intervals for σ^2

$$\left(\frac{(n-1)S^2}{\chi_{\frac{\alpha}{2},n-1}^2}, \frac{(n-1)S^2}{\chi_{1-\frac{\alpha}{2},n-1}^2}\right)$$

- For one-sided CI, take one of them, and change $\alpha/2$ to α .
- For CI for σ , take squareroot of above formulas.