7A CIforProp

Contents

A

Sample Proportion and Confidence Interval						
A.1	Central Limit Theorem					
A.2	a					
A.3	figure					
A.4	Confidence Interval for p					
A.5	95% approx CI for p					
A.6	Ex: Tire Share					
A.7	Ex: Drought and Fertilizer Use					

Textbook: Devore 8e

A Sample Proportion and Confidence Interval

[ToC]

A.1 Central Limit Theorem

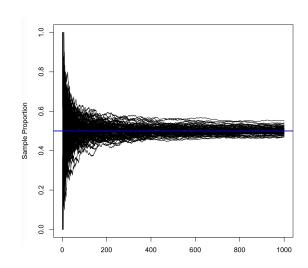
• When your random sample is binary (from a population with 0s and 1s), with p=overall proportion of 1s in the population. Then we let

$$X = [\text{number of 1s in the sample}], \qquad \hat{p} = \frac{\lambda}{r}$$

Then we have

$$X \sim Bin(n,p)$$

A.2 CLT


- 1. If (np > 10) and (n(1-p) > 10), then Binomial can be approximated by Normal.
- 2. E(X) = np and V(X) = np(1-p).

Then we have

$$X \sim Bin(n,p) \approx N(np, \sqrt{np(1-p)})$$

$$\hat{p} = \frac{X}{n} \approx N\left(p, \sqrt{\frac{p(1-p)}{n}}\right)$$

A.3 figure

0/1 (each experiment)

 \hat{p}

$$\{0,1,0,0,\dots,1\}$$

A.4 Confidence Interval for p

Suppose your binary data are Random Sample from distribution with proportion p.

We know that
$$\hat{p} \sim N\left(p, \sqrt{\frac{np(1-p)}{n}}\right)$$
.

Then, our $100(1-\alpha)\%$ Confidence Interval for p is

$$\hat{p} \pm z_{\frac{\alpha}{2}} \sqrt{\frac{p(1-p)}{n}}$$

Similarly for one-sided CI.

A.5 95% approx CI for p

Then, our $100(1-\alpha)\%$ Confidence Interval for p is

$$\hat{p} \pm 1.96\sqrt{\frac{p(1-p)}{n}}$$

A.6 Ex: Tire Share

Suppose that the Goodyear Tire company has historically held 42% of the market for automobile tires in US. Recent changes in company operation prompted the firm to test the validity of the assumption that it still controlls 42% of the market. With n=100, sample showed 35/100 had Goodyear tires.

A.7 Ex: Drought and Fertilizer Use

The percentage of farmers using fertilizers in an African country was known to be 35%. The drought and other events of the last few years are believed to have had a potential impact on the proportion of farmars using fertilizers. An international aid program wants to test if it changed. With n=550, sample proportion was = 242/550.