7C Test for Prop

Contents

\mathbf{A}	One	-Sample Z-test for proportion
	A.1	Test for a Population Proportion
	A.2	Ex: Drought and Fertilizer Use
	A.3	Ex: Tire Share
	A.4	Example 8.1-1: One sample proportion

Textbook: Devore 8e

A One-Sample Z-test for proportion

[ToC]

A.1 Test for a Population Proportion

If we wish to test $H_0: p = p_0$ against alternatives

 $H_A: p > p_0$ (Upper-tailed alternative)

 $H_A: p < p_0$ (Lower-tailed alternative)

 $H_A: p \neq p_0$ (Two-tailed alternative)

We let $\hat{p} = X/n$ and perform one-sample z-test with significance level α of your choice. That is, the test statistic is

$$z = \frac{\hat{p} - p_0}{\sqrt{p_0(1 - p_0)/n}}$$

H_A	P-value
upper-tailed	$1 - \Phi(z)$
lower-tailed	$\Phi(z)$
Two-tailed	$2(1-\Phi(z))$

A.2 Ex: Drought and Fertilizer Use

The percentage of farmers using fertilizers in an African country was known to be 35%. The drought and other events of the last few years are believed to have had a potential impact on the proportion of farmers using fertilizers. An international aid program wants to test if it changed. With n=550, sample proportion was = 242/550.

A.3 Ex: Tire Share

Suppose that the Goodyear Tire company has historically held 42% of the market for automobile tires in US. Recent changes in company operation prompted the firm to test the validity of the assumption that it still controlls 42% of the market. With n=100, sample showed 35/100 had Goodyear tires.

A.4 Example 8.1-1: One sample proportion

A study was conducted on the impact characteristics of football helmets used in competitive high school programs. In the study, a measurement called the Gadd Severity Index (GSI) was obtained on each helmet using a standardized impact test. A helmet was deemed to have failed if the GSI was greater than 1200. Of the 81 helmets tested, 19 failed the GSI 1200 criterion.

- 1. What is the point estimate of the proportion of helmets that fail, and standard error of the estimate?
- 2. Based on the sample, what is the 95% confidence interval for the true proportion of helmets that would fail the test?
- 3. Test the null hypothesis that true proportion of helmets that would fail the test is 30% against the lower-tailed alternative.
- 4. If the test was to be conducted again, how many suspension-type helmets should be tested so that the margin of error does not exceed 0.05 with 95% confidence?