8A One-Sample Z-test for Mean #### Contents | 1Sub | Subsections | | | |------|-----------------------------|--|--| | A.1 | One-sample Z-test for μ | | | | | z-test vs t-test | | | | A.3 | Meaning of p-value | | | Textbook: Devore 8e ## 8A Subsections [ToC] ### A.1 One-sample Z-test for μ To test the null hypothesis of $H_0: \mu = \mu_0$ against one of the alternatives from below: $$H_A$$: $\mu > \mu_0$ (Upper-tailed alternative) $$H_A$$: (Lower-tailed alternative) $$H_A$$: $\mu \neq \mu_0$ (Two-tailed alternative) We use the test statistic of $$z = \frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}},$$ and with significance level α , $$\mu_A = \frac{\mu - \mu_0}{\sigma / \sqrt{n}}$$ Test procedure: 1. Set up the null and alternative hypothesis. | H_A | rejection region | p-value | Power | |--------------|--|------------------|--| | upper-tailed | $z > z_{\alpha}$ | $1 - \Phi(z)$ | 1 - $\Phi(z_{\alpha}-\mu_A)$ | | lower-tailed | $z < -z_{\alpha}$ | $\Phi(z)$ | $\Phi(-z_{lpha}-\mu_A)$ | | Two-tailed | $z < -z_{\alpha/2} \text{ or } z > z_{\alpha/2}$ | $2(1-\Phi(z))$ | $1 - \Phi(z_{\frac{\alpha}{2}} - \mu_A) + \Phi(-z_{\frac{\alpha}{2}} - \mu_A)$ | - 2. Calculate test statistic $z = \frac{\overline{X} \mu_0}{\sigma / \sqrt{n}}$. - 3. Calculate p-value according to the alternative. - 4. Reject H_0 if p-value is LESS than α . If you can't reject H_0 , then the test is inconclusive. #### A.2 z-test vs t-test - 1. When n > 40 \rightarrow z-test - 2. When $n \leq 40$ (Normality must be assumed) - σ is known \rightarrow z-test - σ is unknown, s is used instead \rightarrow t-test #### A.3 Meaning of p-value • p-value is the probability of getting the observed value of z or 'worse' when H_0 is true.