8A One-Sample Z-test for Mean

Contents

1Sub	Subsections		
A.1	One-sample Z-test for μ		
	z-test vs t-test		
A.3	Meaning of p-value		

Textbook: Devore 8e

8A Subsections

[ToC]

A.1 One-sample Z-test for μ

To test the null hypothesis of $H_0: \mu = \mu_0$ against one of the alternatives from below:

$$H_A$$
: $\mu > \mu_0$ (Upper-tailed alternative)

$$H_A$$
: (Lower-tailed alternative)

$$H_A$$
: $\mu \neq \mu_0$ (Two-tailed alternative)

We use the test statistic of

$$z = \frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}},$$

and with significance level α ,

$$\mu_A = \frac{\mu - \mu_0}{\sigma / \sqrt{n}}$$

Test procedure:

1. Set up the null and alternative hypothesis.

H_A	rejection region	p-value	Power
upper-tailed	$z > z_{\alpha}$	$1 - \Phi(z)$	1 - $\Phi(z_{\alpha}-\mu_A)$
lower-tailed	$z < -z_{\alpha}$	$\Phi(z)$	$\Phi(-z_{lpha}-\mu_A)$
Two-tailed	$z < -z_{\alpha/2} \text{ or } z > z_{\alpha/2}$	$2(1-\Phi(z))$	$1 - \Phi(z_{\frac{\alpha}{2}} - \mu_A) + \Phi(-z_{\frac{\alpha}{2}} - \mu_A)$

- 2. Calculate test statistic $z = \frac{\overline{X} \mu_0}{\sigma / \sqrt{n}}$.
- 3. Calculate p-value according to the alternative.
- 4. Reject H_0 if p-value is LESS than α . If you can't reject H_0 , then the test is inconclusive.

A.2 z-test vs t-test

- 1. When n > 40 \rightarrow z-test
- 2. When $n \leq 40$ (Normality must be assumed)
 - σ is known \rightarrow z-test
 - σ is unknown, s is used instead \rightarrow t-test

A.3 Meaning of p-value

• p-value is the probability of getting the observed value of z or 'worse' when H_0 is true.