8C When N is less than 40

Contents

8CSubsections				
C.1	Intro			
C.2	One-sample t-test for μ			
C.3	Ex: Concrete Strength			
C.4	Ex: Sprinkler Systems			
C.5	Ex: Tire Life			

Textbook: Devore 8e

8C Subsections

[ToC]

C.1 Intro

- 1. When n > 40 \rightarrow z-test
- 2. When $n \leq 40$ (Normality must be assumed)
 - σ is known \rightarrow z-test
 - σ is unknown, s is used instead \rightarrow t-test

C.2 One-sample t-test for μ

When we have to use S instead of σ

- Let X_1, \ldots, X_n be Random Sample from $N(\mu, \sigma^2)$ distribution, and assume σ is **unknown**.
- We still have sample distribution,

$$\overline{X} \sim N(\mu, \sigma^2/n),$$

- But since σ is unknwn, we must use the sample SD S instead.
- That gives us the test statistic

$$t = \frac{\overline{X} - \mu}{S/\sqrt{n}} \sim t(df = n - 1)$$

One Sample t-test

To test the null hypothesis of $H_0: \mu = \mu_0$ against one of the alternatives from below:

 H_A : $\mu > \mu_0$ (Upper-tailed alternative) H_A : $\mu < \mu_0$ (Lower-tailed alternative) H_A : $\mu \neq \mu_0$ (Two-tailed alternative)

We use the test statistic of $t = \frac{\overline{X} - \mu_0}{S/\sqrt{n}}$,

H_A	rejection region	p-value	power
upper-tailed	$t > t_{\alpha, n-1}$	1 - P(T < t)	$1 - P(T < t_{\alpha} - \mu_A)$
lower-tailed	$t < -t_{\alpha,n-1}$	P(T < t)	$P(T < -t_{\alpha} - \mu_A)$
Two-tailed	$t < -t_{\alpha/2, n-1} \text{ or } t > t_{\alpha/2, n-1}$	2(1 - P(T < t))	$1 - P(T < t_{\frac{\alpha}{2}, n-1} - \mu_A)$
			$+P(T<-t_{\frac{\alpha}{2},n-1}-\mu_A)$

$$T \sim t(n-1), \qquad \mu_A = \frac{\sqrt{n}}{\sigma}(\mu - \mu_0)$$

- Standards for 28-day compressive strength test for concrete requies that concrete cylinders have true mean compressive strength higher than 3000 psi (20.7 MPa).
- 15 specimen has been tested, and resulted in sample mean of 3055 psi, and sample standard deviation of 75 psi.

•

n=15 xbar=3055 S = 75 mu0=3000 t = (xbar - mu0)/(S/sqrt(n)) 1-pt(t, n-1) pt(t, n-1) 0.006550495

C.4 Ex: Sprinkler Systems

• Manufacturer claims true average system temparature is 130 F. Sample of n=9 was taken with sample average of 131.08 F, and sample standard deviation of 1.5F. Test the hypothesis that manufacturer is right against upper-tail alternative.

```
n=9 xbar=131.08 mu0=130 S = 1.5 t = (xbar - mu0)/(S/sqrt(n)) 1-pt(t, n-1) pt(t, n-1) 1 0.0313947
```

C.5 Ex: Tire Life

• The manufacturer of a new fiberglass tire claims that its average life will be at least 40,000 miles. To verify this claim a sample of 12 tires is tested. Sample mean was 37.84, and sample SD was 2.56.

n=12 xbar = 38.84 S = 3.56 mu = 40 t = (xbar - mu = 0)/(S/sqrt(n)) 1-pt(t, n-1) pt(t, n-1) 0.1415091