2E+F Cond Prob and Indep

Contents

2E Con	ditional Probability
E.1	Conditional Probability
E.2	Ex: Defective/Non-defective
2F Inde	ependence
F.1	Complements are also independent
F.2	How the table look under independence
F.3	Ex: Aircraft Seam
F.4	Ex: Free-Throws

2E Conditional Probability

[ToC]

E.1 Conditional Probability

• Probability of A given B.

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

- Only defined when P(B) > 0.
- Can also be written in multiplication form

$$P(A \cap B) = P(A|B)P(B)$$

E.2 Ex: Defective/Non-defective

factory A 22 128 factory B 28 72	е
factory D 20 79	
factory B 28 72	

You select a product randomly

- \bullet P(Defective)
- \bullet P(Defective|A)

ullet Two events A and B are independent if

$$P(A|B) = P(A)$$
, or $P(A \cap B) = P(A) \cdot P(B)$.

Events are said to be dependent otherwise.

• This turns Inclusion-Exclusion formula to:

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

$$= P(A) + P(B) - P(A)P(B)$$

• Mutually exclusive events cannot be independent.

F.1 Complements are also independent

Given

- $P(A \cap B) = P(A)P(B)$ and
- $P(A \cup B)$,
- events A^c and B are also independent.

F.2 How the table look under independence

	Defective	non defective	total
factory A	22	128	150
factory B	28	72	100
total	50	200	200

• How should the table look like if they are independent?

factory A		150
100001 y 11		100
factory B		100
total 50	200	200

F.3 Ex: Aircraft Seam

- An aircraft seam requires 25 rivets. The seam will have to be reworked if any of these rivets is defective. Suppose rivets are independent of each other.
- If only 1% of all rivets needs to be reworked, what is the probability that a seam needs to be reworked.

F.4 Ex: Free-Throws

• If your chance of making a Free-Throw is 80%, then what is the probability of making F-T 5 in a row? (Assume independence.)

• If you flip a coin 7 times, what is the probability of having 7 H?