3E Poisson

Contents

3E Poisson Distribution						
E.1	Poisson					
E.2	Poisson as a limit of Binomial					
E.3	When Time Units are Changed					
E.4	Ex: Number of Tornados					
E.5	Ex: Aircraft arrivals					
E.6	R code for $\operatorname{Poisson}(\lambda)$					
E.7	Poisson process					
E.8	Sum of Poisson is Poisson					

3E Poisson Distribution

[ToC]

E.1Poisson

 $X \sim Poi(n, m, N)$ Analogy: events with rate λ per unit time.

pmf:
$$p(x) = p(X = x) = \frac{e^{-\lambda} \lambda^x}{x!}$$
 for $x = 0, 1, 2, ...$
CDF: $F(x) = P(X \le x) = \sum_{k=0}^{x} p(x)$

CDF:
$$F(x) = P(X \le x) = \sum_{k=0}^{\infty} p(x)^{k}$$

mean: $E(X) = \lambda$

 $var: V(X) = \lambda$

 $MGF: M(t) = \exp{\{\lambda(e^t - 1)\}}$

```
dpois(2, lambda)
                       #pmf at x=2
ppois(2, lambda)
                       \#CDF at x=2
qpois(.5, lambda)
                       #Inv CDF at q=.5
rpois(1000, lambda)
                        # random sample of size 1000
```

E.2 Poisson as a limit of Binomial

Poisson distribution is the limit of binomial distribution when $n \to \infty$, $p \to 0$, in such a way that $np \to \lambda$. Starting from Binomial pmf and replacing $p = \lambda/n$,

$$p_X(x) = P(X = x) = \binom{n}{x} p^x (1 - p)^{n - x}$$

$$= \binom{n}{x} \left(\frac{\lambda}{n}\right)^x \left(1 - \frac{\lambda}{n}\right)^{n - x}$$

$$= \frac{1}{x!} \frac{n!}{(n - x)!} \left(\frac{\lambda}{n}\right)^x \left(1 - \frac{\lambda}{n}\right)^n \left(1 - \frac{\lambda}{n}\right)^{-x}$$

$$= \frac{1}{x!} \left(\frac{n!}{(n - x)! n^x}\right) \lambda^x \left(1 - \frac{\lambda}{n}\right)^n \left(1 - \frac{\lambda}{n}\right)^{-x}$$

If we take the lim,

$$\lim_{n \to \infty} p_X(x) = P(X = x) = \lim_{n \to \infty} \frac{1}{x!} \left(\frac{n!}{(n-x)!n^x} \right) \lambda^x \left(1 - \frac{\lambda}{n} \right)^n \left(1 - \frac{\lambda}{n} \right)^{-x}$$
$$= \frac{\lambda^x}{x!} e^{-\lambda}$$

E.3 When Time Units are Changed

E.4 Ex: Number of Tornados

Suppose the number X of tornadoes observed in a particular region during a 1-year period has a Poisson distribution with $\lambda = 8$.

1. What is the probability we get fewer than 4 tornados next year?

2. What is the probability we get fewer than 6 tornados in next two years?

E.5 Ex: Aircraft arrivals

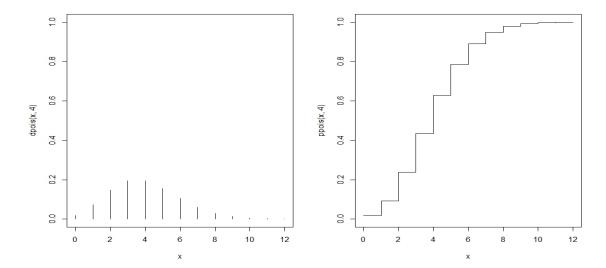
Suppose small aircraft arrive at a certain airport according to a Poisson process with rate $\alpha = 8$ per hour, so that the number of arrivals during a time period of t hours is a Poisson r.v. with $\lambda = 8t$.

- 1. What is the probability that exactly 6 small aircraft arrive during 1-hour period?
- 2. What are the expected value and standard deviation of the number of small aircraft that arrive during a 90-min period?
- 3. What is the probability that at least 20 small aircraft arrive during 3 hour period?

E.6 R code for Poisson(λ)

x = [number of events in a unit time] $\lambda = [\text{average number of events per unit time}]$

```
dpois(3,4)  #- p(3): pmf of Poi(lambda=.5) at x=3 ppois(3,4)  #- F(3): CDF of Poi(lambda=.5) at x=3 layout( matrix(1:2, 1, 2) ) #- Make plot layout side by side x <- 0:12 plot(x, dpois(x, 4), type="h", ylim=c(0,1)) #- PMF plot - plot(x, ppois(x, 4), type="s", ylim=c(0,1)) #- CDF plot -
```



E.7 Poisson process

• Let N(t) denote the number of events before time t

$$P(N(t_2) - N(t_1) = x) = \frac{e^{-\lambda(t_2 - t_1)} \left[\lambda (t_2 - t_1)\right]^x}{x!}.$$

- Assume independence over disjoint time interval.
- Then waiting time between events will be iid Exponential with mean $1/\lambda$.

Poisson as a limit If we let $n \to \infty$, $p \to 0$, in such a way that $np \to \lambda$, then the pmf Binomial $(n, p) \to \text{Poisson}(x; \lambda)$.

E.8 Sum of Poisson is Poisson

• mgf for poisson

$$M_{X_1}(t) = E(e^{tX}) = \sum_{x=0}^{\infty} e^{tx} \frac{e^{-\lambda} \lambda^x}{x!}$$

$$= \sum_{x=0}^{\infty} \frac{e^{-\lambda} (e^t \lambda)^x}{x!}$$

$$= \frac{e^{-\lambda} \sum_{x=0}^{\infty} (e^t \lambda)^x}{x!}$$

$$= e^{-\lambda} e^{(\lambda e^t)} = e^{\lambda (e^t - 1)}$$

• If $X_1, X_2 \sim \text{Poi}(\lambda)$ and independent, since

$$M_{X_1+X_2}(t) = M_{X_1}(t)M_{X_1}(t) = e^{\lambda(e^t-1)}e^{\lambda(e^t-1)} = e^{2\lambda(e^t-1)},$$

we see taht $X_1 + X_2 \sim \text{Poi}(2\lambda)$.