3G Hypergeometric

Contents

GHy	pergeometric
G.1	HG
G.2	Derivation of Hypergeometric pmf
G.3	Binomial vs Hypergeometric
G.4	R code for Hypergeometric (n, m, N)
G.5	pmf and CDF
G.6	Ex: Rock sampling
G.7	Ex: Capture-Recapture
G.8	Cap-Recap Table 1
G.9	Cap-Recap Table 2

3G Hypergeometric

[ToC]

G.1 HG

 $X \sim HG(n, m, N)$ Analogy: N balls in an urn, of which m are red. Pick n at once. X= number of red balls.

pmf:
$$p(x) = p(X = x) = \frac{\binom{m}{x} \binom{N-m}{n-x}}{\binom{N}{n}}$$
 **

CDF:
$$F(x) = P(X \le x) = \sum_{k=0}^{x} p(x)$$

mean:
$$E(X) = np$$
 var: $V(X) = \left(\frac{N-n}{N-1}\right) np(1-p)$

MGF: M(t) = DoesNotExist

where p = m/N.

** for $\max(0, n - N + m) \le x \le \min(n, m)$, and 0 otherwise.

G.2 Derivation of Hypergeometric pmf

G.3 Binomial vs Hypergeometric

ullet Suppose you have populatio of N subject, of which m are defective. Let

X = [number of defectives in sample].

- Sample with replacement.
- Sample without replacement.

G.4 R code for Hypergeometric (n, m, N)

```
x = [\text{number of heads}]
n = [\text{number of balls picked}]
m = [\text{number of Red balls}]
N = [\text{number of total balls}]
    dhyper(3,4,6,5) #- p(3): pmf of Hypergeoretric(m=4, N-m=6, n=5) at x=3 (That means N=10)
    phyper(3,4,6,5)
                          #- F(3): CDF of Hypergeoretric(m=4, N-m=6, n=5) at x=3
    layout( matrix(1:2, 1, 2) ) #- Make plot layout side by side
    x < -0:10
   plot(x, dhyper(x, 4,6,5), type="h", ylim=c(0,1)) #- PMF plot -
   plot(x, phyper(x, 4,6,5), type="s", ylim=c(0,1)) #- CDF plot -
```

G.5 pmf and CDF

Figure 1: 10 balls, 4 are red. Pick 5 at once. X=number of red picked.

G.6 Ex: Rock sampling

A geologist has collected 10 specimens of basaltic rock and 10 specimens of granite. The geologist instructs a laboratory assistant to randomly select 15 of the specimen for analysis.

a What is the pmf of the number of granite specimen selected for analysis.

b What is the probability hat all specimens of one of the two types of rock are selected for analysis.

c What is the probability that the number of granite specimens selected for analysis is within 1 standard deviation of its mean value?

G.7 Ex: Capture-Recapture

- One popular method of estimating population size of wild animal is called Capture-Recapture method.
- \bullet First, you capture m subjects, tag and release them.
- \bullet Sometime later, you come back and capture n subjects.
- \bullet Within this n subjects, we count how many of them has a tag.
- Let X be the number of tagged subjects.

Our logic is that since

$$E(X) = \frac{nm}{N},$$

It must be that

$$X \approx E(X) = \frac{nm}{N}.$$

If we go with this logic, then our estimator for N will be $\hat{N} = nm/X$.

If we use this estmator in the case (N = 500, n = 100, m = 100), what will be the accuracy of this estimator \hat{N} ?

Let's define our 'accuracy' as estimator \hat{N} being within 10% of the true value N.

G.8 Cap-Recap Table 1

If N is 500, then $P(\hat{N} \text{ will be within true value } \pm 10\%) = P(450 < \hat{N} < 550) = P(a < X < b)$

N = 500P(a < X < b)b a n \mathbf{m} $= P(450 < \hat{N} < 550)$ 10 10 0.180.2220 20 0.720.880 5.5 50 50 4.50.19100 100 18.1 22.20.4272.7 200 200 88.8 0.86300 163.6 200 0.999300

Cap-Recap Table 2 G.9

If N is 5000, then $P(\hat{N} \text{ will be within true value } \pm 10\%) = P(4500 < \hat{N} < 5500) = P(a < X < b)$

N = 5000					
n	m	a	b	P(a < X < b)	
				$= P(4500 < \hat{N} < 5500)$	
100	100	1.8	2.2	.28	
100	200	3.6	4.4	.20	
200	200	7.3	8.9	.15	
500	500	45.5	55.6	.57	
1000	1000	181.8	222.2	.93	

n = number of second round capturem = number of first round capture-tag-release