Ch2 Regression

Contents

2	Subsection
	A.1 Sinple Linear Regression (Advertising Data)
	A.2 Scatterplot
	A.3 Questions
	A.4 SIMPLE LINEAR REGRESSION
	A.5 SLR
	A.6 Simulation
	A.7 Reducible vs Irreducible Error
	A.8 Minimizing RSS
	A.9 MULTIPLE LINEAR REGRESSION
	A.10 MLR
	A.11 Last row
	A.12 Model Without Newspaper
	A.13 The Marketing Questions
	A.14 Q1. Is there a relationship between advertising sales and budget?
	A.15 Q2. How strong is the relationship?
	A.16 Q3. newspaper? (Confounding Effect)

17 Q4. All predictors or just a few?	
18 Q5. Effect of each medium?	
19 Q6. Prediction Accuracy?	
20 Q7. Is the relationship linear?	
21 Q8. Is there synergy among the advertising media?	
22 Inference vs Prediction	
23 Flexibility and Interpretability trade-off	

Textbook: James et al. ISLR 2ed.

2 Subsection

[ToC]

A.1 Sinple Linear Regression (Advertising Data)

```
Advertising.csv from ISLR web site. 4 variables are recorded. Sales
TV
radio
newspaper
```

- Let Ad = TV + radio + newspaper (Total Spending)
- Then we are thinking:

$$Sales = f(Ad)$$

A.2 Scatterplot

A.3 Questions

- 1. Is there a relationship between advertising budget and sales?
- 2. If so, what is the form of the relationship?
- 3. How strong is the relationship between advertising budget and sales?
- 4. How accurately can we estimate the effect?
- 5. How accurately can we predict future sales?

A.4 SIMPLE LINEAR REGRESSION

Simple Linear Regression

A.5 SLR

• There must be a relationship between Y and X.

$$Y = f(X) + \epsilon$$

• Assumes that $f(\cdot)$ is a linear function, and there is an normally distributed error term

$$Y = \beta_0 + \beta_1 X + \epsilon, \qquad \epsilon \sim N(0, \sigma^2)$$

• Estimate parameters β_0 and β_1 by minimizing sum of squared residuals (**Residual Sum of Squares**)

$$RSS = \sum_{i=1}^{n} (Y_i - \hat{Y})^2$$

It is called **ErrorSS** in some books.

- Estimators $\hat{\beta}_0$ and $\hat{\beta}_1$ are best estimators possible. (Minimum Variance Unbiased Estimators)
- Formula for $\hat{\beta}_1$ and $\hat{\beta}_0$:

$$\hat{\beta}_1 = r s_y / s_x \qquad \hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x}$$

- is assumption true?
- how off are the estimators?
- how accurate is the prediction?

A.6 Simulation


```
X = rnorm(30, 3, 5)
Y = 4+1.5* X + rnorm(30, 0, 5)

plot(X, Y, xlim=c(-6, 11), ylim=c(-10, 25))
abline(a=4, b=1.5, col="blue", lwd=2)
m1 <- lm(Y~X)
abline(m1, col="red")</pre>
```

A.7 Reducible vs Irreducible Error

• True relationship

$$Y = f(X) + \epsilon$$

- We are trying to estimate f
- Reducible Error:

$$|f(X) - \hat{f}(X)|$$

• Irreducible Error:

$$\epsilon$$

A.8 Minimizing RSS

•

$$RSS = \sum_{i=1}^{n} (Y_i - \hat{Y})^2$$

• $\hat{\beta}_0$ and $\hat{\beta}_1$ were calculated by minimizing RSS analytically.

$$\hat{\beta}_1 = r s_y / s_x \qquad \hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x}$$

A.9 MULTIPLE LINEAR REGRESSION

Multiple Linear Regression

A.10 MLR

 \bullet Want to guess the next Y as accurate as possible

sales =
$$\beta_0 + \beta_1 \, \text{TV} + \beta_2 \, \text{radio} + \beta_3 \, \text{newspaper} + \epsilon$$
, $\epsilon \sim N(0, \sigma^2)$

• Estimate parameters by minimizing

$$RSS = \sum_{i=1}^{n} (Y_i - \hat{Y})^2$$

• Formula for $\hat{\boldsymbol{\beta}} = (\beta_0, \beta_1, \beta_2, \beta_3)'$:

$$\hat{\boldsymbol{\beta}} = (\boldsymbol{X'X})^{-1}\boldsymbol{X'Y}$$

A.11 Last row


```
Model2 = lm(sales ~ TV + radio + newspaper)
summary(Model2)
```

```
Coefficients:
```

```
Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.938889 0.311908 9.422 <2e-16 ***

TV 0.045765 0.001395 32.809 <2e-16 ***

radio 0.188530 0.008611 21.893 <2e-16 ***
```

newspaper -0.001037 0.005871 -0.177 0.86

Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1

Residual standard error: 1.686 on 196 degrees of freedom Multiple R-squared: 0.8972, Adjusted R-squared: 0.8956 F-statistic: 570.3 on 3 and 196 DF, p-value: < 2.2e-16

A.12 Model Without Newspaper

```
lm(formula = sales ~ TV + radio)
   Coefficients:
              Estimate Std. Error t value Pr(>|t|)
   (Intercept) 2.92110 0.29449 9.919 <2e-16 ***
   TV 0.04575 0.00139 32.909 <2e-16 ***
   radio 0.18799 0.00804 23.382 <2e-16 ***
   Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
   Residual standard error: 1.681 on 197 degrees of freedom
   Multiple R-squared: 0.8972, Adjusted R-squared: 0.8962
   F-statistic: 859.6 on 2 and 197 DF, p-value: < 2.2e-16
```

With only TV and Radio as predictor It's like fitting plane in 3-d space

A.13 The Marketing Questions

- 1. Is there a relationship between advertising sales and budget?
- 2. How strong is the relationship?
- 3. Is it important to advertise in newspaper?
- 4. Is all predictor important, or just a subset?
- 5. Which media contribute to most to the sales? How much?
- 6. How accurately can we predict future sales?
- 7. Is the relationship linear?
- 8. Is there synergy among the advertising media?

A.14 Q1. Is there a relationship between advertising sales and budget?

- \bullet At least one X useful?
- In SLR, we only need to test $\beta_1 = 0$.
- For MLR, we have to test $\beta_1 = \beta_2 = \beta_3 = 0$.
- \bullet Use F-statistic

$$F = \frac{(TSS - RSS)/p}{RSS/(n-p-1)}$$

and p is the number of variables (excluding intercept).

summary(Model2)

- # Residual standard error: 1.686 on 196 degrees of freedom
 # Multiple R-squared: 0.8972,Adjusted R-squared: 0.8956
 # F-statistic: 570.3 on 3 and 196 DF, p-value: < 2.2e-16</pre>
- We can test SUBSET of parameters ($\beta_2 = \beta_3 = 0$) by

$$F = \frac{(RSS_0 - RSS)/q}{RSS/(n - p - 1)}$$

Where RSS_0 is the RSS from the model using $\beta_2 = \beta_3 = 0$, and q is the number of suppressed parameters (q = 2 in this case).

• Why test as a whole when you can do the t-test individually? (important when p is large)

A.15 Q2. How strong is the relationship?

How good is Model Fit?

• Coefficient of Determination

TSS =
$$\sum_{i=1}^{n} (Y_i - \bar{Y})^2$$
, RSS = $\sum_{i=1}^{n} (Y_i - \hat{Y})^2$, $R^2 = 1 - \frac{RSS}{TSS}$

- $R^2 = .89719$ without newspaper
- $R^2 = .8972$ with newspaper
- MSE (RSE in ISLR) estimates σ^2 and represents irreducible error.
- \bullet With p predictors,

$$MSE = \sqrt{\frac{1}{n-p-1}RSS}$$

A.16 Q3. newspaper? (Confounding Effect)

```
Model3 = lm(sales ~ newspaper)
summary(Model3)
   Coefficients:
             Estimate Std. Error t value Pr(>|t|)
   newspaper 0.05469 0.01658 3.30 0.00115 **
   Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
   Residual standard error: 5.092 on 198 degrees of freedom
   Multiple R-squared: 0.05212, Adjusted R-squared: 0.04733
   F-statistic: 10.89 on 1 and 198 DF, p-value: 0.001148
```


cor(Adv) # correlation matrix of each column

	TV	radio	newspaper	sales
TV	1.00000000	0.05480866	0.05664787	0.7822244
radio	0.05480866	1.00000000	0.35410375	0.5762226
newspaper	0.05664787	0.35410375	1.00000000	0.2282990
sales	0.78222442	0.57622257	0.22829903	1.0000000

- Mutiple Regression suggests newspaper has no effect
- In Simple Regression, newspaper gets credit through radio because of the correlation.
- Other examples of confounding variables (lurking variables) includes: (shark attack vs ice cream sales, vocabulary score vs num of cavity)

A.17 Q4. All predictors or just a few?

- In general, have to try out many models, and use some kind of criteria to pick the best
- Mallow's C_p , AIC, BIC, Adjusted \mathbb{R}^2 . (more in Ch6)
- There's 2^p models with p predictors. $2^3 = 8, 2^{10} = 1024, 2^{30} = 1,073,741,824$.
- Forward, Backward, Mixed selection

A.18 Q5. Effect of each medium?

We can construct CI for parameters.

```
For the Advertising data, the 95\% CI are:

(0.043, 0.049) for TV,

(0.172, 0.206) for radio,

(-0.013, 0.011) for newspaper.

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.938889 0.311908 9.422 <2e-16 ***

TV 0.045765 0.001395 32.809 <2e-16 ***

radio 0.188530 0.008611 21.893 <2e-16 ***

newspaper -0.001037 0.005871 -0.177 0.86
```

Residual standard error: 1.686 on 196 degrees of freedom

A.19 Q6. Prediction Accuracy?

- We can get $\hat{f}(X)$ using estimated β_i .
- There could be model bias
- Get CI for parameters, and PI for predictions

Residual standard error: 1.686 on 196 degrees of freedom


```
newAdv = data.frame(TV=c(50, 60), radio=c(20, 10), newspaper=c(0, 0))
newAdv
      TV radio newspaper
    1 50
            20
    2 60 10
predict(Model2, newdata=newAdv, interval="confidence")
           fit
                    lwr
                             upr
    1 8.997722 8.515752 9.479692
    2 7.570068 7.099337 8.040800
predict(Model2, newdata=newAdv, interval="prediction")
```

upr

fit

lwr

1 8.997722 5.638898 12.35655 2 7.570068 4.212838 10.92730

A.20 Q7. Is the relationship linear?

• If the relationships are linear, then the residual plots should display no pattern. Needs transformation?

A.21 Q8. Is there synergy among the advertising media?

- The standard linear regression model assumes an additive relationship between the predictors and the response.
- Including an interaction term in the model results in a substantial increase in R^2 , from around 90% to almost 97

A.22 Inference vs Prediction

• Inference

Which media contribute to sales?

Which media generate the biggest boost in sales?

How much increase in sales is associated with a given increase in TV advertising?

• Prediction

If we spend \$A on TV ads and \$B on Radio ads, how much Sales would we get?

A.23 Flexibility and Interpretability trade-off

