Ch8 - Decision Tree

Contents

8ASubsection				
A.1	Basics			
A.2	Decision Tree			
A.3	Tree Growing			
A.4	Tree Pruning			
	Pruning			
A.6	Pruning			
A.7	Classification Trees			
A.8	Tree vs Linear Models			
A.9	Bagging			
A.10	Large Variance			
A.11	Random Forests			
A.12	Boosting			
A.13	Boston Data			
A.14	party Package			

Textbook: James et al. ISLR 2ed.

8A Subsection

[ToC]

A.1 Basics

```
Boston Data (400 training, 96 test)
```

```
Reg01 = lm(medv~., data=Train.set)
> summary(Reg01)
Coefficients:
          Estimate Std. Error t value Pr(>|t|)
(Intercept)
         35.023724 6.198554 5.650 3.11e-08 ***
crim
         zn
indus
         -0.013844 0.072338 -0.191 0.848329
          2.666581 1.005233 2.653 0.008315 **
chas
        -16.880242 4.557814 -3.704 0.000244 ***
nox
          rm
         -0.002590 0.015995 -0.162 0.871431
age
```

```
rad 0.296458 0.075489 3.927 0.000102 ***
tax -0.010113 0.004365 -2.317 0.021054 *
ptratio -0.925880 0.150607 -6.148 1.96e-09 ***
black 0.008767 0.003380 2.594 0.009849 **
lstat -0.520376 0.060880 -8.548 2.97e-16 ***
```

-1.514405 0.237707 -6.371 5.35e-10 ***

dis

Residual standard error: 4.958 on 386 degrees of freedom

Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1

Multiple R-squared: 0.7303, Adjusted R-squared: 0.7212 F-statistic: 80.41 on 13 and 386 DF, p-value: < 2.2e-16

A.2 Decision Tree

- Can be used in Classification / Regression
- Root Node / Parent Node / Child Node
- Terminal Nodes / Leaves
- Every observation in the terminal node gets same prediction (mean of region)
- Regression Tree: minimize RSS

$$\sum_{j=1}^{J} \sum_{i \in R_j} (y_i - \hat{y}_{R_j})^2$$

• Classification Tree: 3 choices for the measure.

- Classification Error Rate
- Gini Index
- Entropy (Cross-Entropy) Gini and Entropy are numerically similar.
- Recursive Binary Splitting: Can't go through all the possibilities; Use Top-Down approach.

A.3 Tree Growing

Recursive Binary Splitting

- 1. Pick the 1st feature, and go through all possible splitting points s, calculating (RSS/Entropy) at each point.
- 2. Go through all features, pick the feature that gives min (RSS/Entropy). That's the best feature to be split at.
- 3. Repeat. (feature that was used for previous split is still in the pool)

- #1 crim per capita crime rate by town.
- #2 zn proportion of residential land zoned for lots over 25,000 sq.ft.
- #3 indus proportion of non-retail business acres per town.
- #4 chas Charles River dummy variable (= 1 if tract bounds river; 0 otherwise).
- #5 nox nitrogen oxides concentration (parts per 10 million).
- #6 rm average number of rooms per dwelling.
- #7 age proportion of owner-occupied units built prior to 1940.
- ## age proportion of owner occupied units built prior to 1340.
- #8 dis weighted mean of distances to five Boston employment centres.
- #9 rad index of accessibility to radial highways.
- #10 tax full-value property-tax rate per \$10,000.
- #11 ptratio pupil-teacher ratio by town.
- #12 black 1000(Bk 0.63)^2 where Bk is the proportion of blacks by town.
- #13 lstat lower status of the population (percent).
- #14 medv median value of owner-occupied homes in \\$1000s.

A.4 Tree Pruning

- Seemingly worthless split may lead to large reduction in RSS later on. (Grow more)
- Growing is likely to overfit, because the resulting tree might be too complex. (Grow less)

- A smaller tree with fewer splits might lead to lower variance and better interpretation at the cost of a little bias.
- Grow a large tree (stop only when each terminal node has fewer than some min num of obs. Then prune later.

A.5 Pruning

- Grow a large tree, then try to select a subtree that leads to the lowest TEST error rate.
- Given a subtree, we can estimate its test error using CV.
- Since there can be too many subtrees, cost complexity pruning selects a small set of subtrees for consideration. (AKA weakest link pruning).
- Rather than considering every possible subtree, we consider a sequence of trees indexed by a nonnegative tuning parameter α .

A.6 Pruning

• For each value of α there corresponds a subtree $T \subset T0$ such that

$$\sum_{m=1}^{|T|} \sum_{x_i \in R_m} (y_i - \hat{y}_{Rm})^2 + \alpha |T|$$

is as small as possible.

- |T| is the number of terminal nodes, Rm is the rectangle (i.e. the subset of predictor space) corresponding to the mth terminal node.
- Use CV to choose best α . (Algorithm 8.1 on p309)

Test.RSS

RMSE Rsquare 1 4.946511 0.6353647

A.7 Classification Trees

Heart data

A.8 Tree vs Linear Models

•

$$f(X) = \beta_0 + \sum_{j=1}^p X_j \beta_j$$
$$f(X) = \sum_{m=1}^M c_m \cdot I(x \in R_m)$$

- Trees are easy to interpret
- Trees may resemble how humans make decisions
- Trees can handle qualitative predictors easier than linear models
- However, trees in general does not have comparable predictive power as other models.

A.9 Bagging

- Trees have too large of variance
- Bagging = Bootstrap aggregation
- can be used outside of DT, but drastically improves DT.
- Use majority class rule for classification prediction
- may cause DT to lose the interpretability (no more Tree diagram)
- Record RSS decrease due to a single split, average over all bootstrapped samples.
- Out-of-Bag Error Estimation (Estimate Test error of Bagged model)
- When the training set for the current tree is drawn by sampling with replacement, about one-third of the cases are left out of the sample. $(e^{-1} = \lim(1 1/n)^n)$

A.10 Large Variance

From Boston data CV1 and CV2 $\,$

A.11 Random Forests

- Like Bagging, but de-correlates
- Each time split occurs, only random sample of m predictor can be considered. Choose $m = \sqrt{p}$.

A.12 Boosting

- Set $\hat{f}(x) = 0$ and $r_i = y_i$ for all i in the training set.
- for b = 1, 2, ..., B repeat:
 - 1. Fit a tree \hat{f}^b with d splits (d=depth) (d+1 terminal nodes) to the training data (X,r).
 - 2. Update \hat{f} by adding in a shrunken version of the new tree:

$$\hat{f}(x) \leftarrow \hat{f}(x) + \lambda \hat{f}^b(x)$$

3. Updata the residuals,

$$r_i \leftarrow r_i - \lambda \hat{f}^b(x_i)$$

• Output the boosted model

$$\hat{f}(x) = \sum_{b=1}^{B} \lambda \hat{f}^b(x)$$

• Boosting Learns SLOWLY.

A.13 Boston Data

Bagging (m=13) Random Forest (m=6)

Test.RSS Test.RSS

RMSE Rsquare RMSE Rsquare

medv 2.891555 0.8635642 medv 2.569209 0.8931857

A.14 party Package

```
https://ademos.people.uic.edu/Chapter24.html
R package 'party::ctree()'
Uses ID3 Algorithm (Iterative Dichotomiser 3) created by JR Quinlan
  wiki: https://en.wikipedia.org/wiki/ID3_algorithm
    (note Examples -> Observations)
  Uses criteria of min entropy to grow trees. Does not prune.
  Some source say it looks at Information Gain,
  but max(IG) iff min(entropy), some other say.
```

IG formula is on Wiki.

Stopping criteria is one of following 3:

- every element in the subset belongs to the same class;
- there are no more attributes to be selected
- there are no examples in the subset, which happens when no example in the parent set was found to match a specific value of the selected attribute.
 An example could be the absence of a person among the
 - An example could be the absence of a person among the population with age over 100 years.