1. Stylized Facts of Financial Return



Financial (log) Return

\[\begin{align*} Y_t &= \mbox{ Stock Price (observation) } \\ \\ X_t &= \ln(Y_t) - \ln(Y_{t-1}) \hspace{5mm} : \mbox{ log-return } \end{align*}\]



Stylized Facts

  • Not normal - Heavy Tailed unconditional and conditional distribution

  • Uncorrelated

  • Squares are correlated

  • Clustering

  • Asymmetry

##   B-L test H0: the series is uncorrelated
##   M-L test H0: the square of the series is uncorrelated
##   J-B test H0: the series came from Normal distribution
##   SD         : Standard Deviation of the series
##       BL15 BL20  BL25 ML15 ML20 JB    SD
## [1,] 0.189 0.15 0.226    0    0  0 0.016



__Ex: SP500

## [1] "^GSPC"

##   B-L test H0: the series is uncorrelated
##   M-L test H0: the square of the series is uncorrelated
##   J-B test H0: the series came from Normal distribution
##   SD         : Standard Deviation of the series
##      BL15 BL20 BL25 ML15 ML20 JB    SD
## [1,]    0    0    0    0    0  0 0.013

We need a model to capture these characteristics.





2. ARCH model

  • Engle (1985) AutoRegressive Conditionally Heteroscedastic Model

  • Won Nobel Prize in Economics

    \[\begin{align*} Y_t &= \sigma_t e_t \hspace{10mm} e_t \sim_{iid} N(0,1) \\\\ \sigma_t^2 &= \omega+ \alpha Y_{t-1}^2 \end{align*}\]

  • (unconditional) Mean \[ E(Y_t) = \sigma_t E(e_t) = 0 \]

  • (unconditional) Variance \[ V(Y_t) = \frac{\omega}{1-\alpha} \hspace{5mm} 0<\alpha<1 \]



Cond’l Mean and Var of ARCH

  • Conditional mean \[ E[Y_t \Big| Y_{t-1}, e_{t-1}, \ldots] \hspace{3mm} = \hspace{3mm} \sigma_t E[e_t] = 0 \]

  • Conditional variance \[ V[Y_t \Big| Y_{t-1}, e_{t-1}, \ldots] \hspace{3mm} = \hspace{3mm} \sigma_t^2 V[e_t] = \sigma_t^2 \]



ARCH is uncorrelated

  • \(Y_t\) is uncorrelated, so it will pass the Ljung-Box test.

  • But \(Y_t^2\) is correlated, so it will NOT pass the McLeod-Li test.



Cond’l Mean and Var of ARMA

  • Suppose \(Y_t\) is AR(1) series observation

  • (unconditional) Mean \[ E( Y_t ) = 0 \]

  • (unconditional) Variance \[ V( Y_t ) = \gamma(0) = (1+\phi_1^2) \sigma^2 \]



Conditional Mean

  • Conditonal Mean:
    \[ E\Big(Y_t \hspace{2mm} \Big| \hspace{2mm} \mbox{all variables realized by yesterday. }\Big) \]

  • Conditonal mean of AR(1): \(Y_t = \phi Y_{t-1} + e_t\) \[\begin{align*} E\Big(Y_t \hspace{2mm} \Big| \hspace{2mm} Y_{t-1}, Y_{t-2}, \ldots, e_{t-1}, e_{t-2}, \ldots\Big) &= E \Big(\phi Y_{t-1} + e_t \hspace{2mm} \Big| \hspace{2mm} Y_{t-1}, Y_{t-2}, \ldots, e_{t-1}, e_{t-2}, \ldots\Big)\\ \\ &= \phi Y_{t-1} + E(e_t) \hspace{2mm} = \hspace{2mm} \phi Y_{t-1}. \end{align*}\]

  • Conditonal variance \[\begin{align*} V\Big(Y_t \hspace{2mm} \Big| \hspace{2mm} Y_{t-1}, Y_{t-2}, \ldots, e_{t-1}, e_{t-2}, \ldots\Big) &= V\Big(\phi Y_{t-1} + e_t \hspace{2mm} \Big| \hspace{2mm} Y_{t-1}, Y_{t-2}, \ldots, e_{t-1}, e_{t-2}, \ldots\Big)\\ \\ &= V(e_t) \hspace{2mm} = \hspace{2mm} \sigma^2 \end{align*}\]

  • Suppose \(Y_t\) is MA(1) series observation

  • (unconditional) Mean \[ E( Y_t ) = 0 \]

  • (unconditional) Variance \[ V( Y_t ) = \gamma(0) = (1+\theta_1^2) \sigma^2 \]

  • Conditonal mean of MA(1): \(Y_t = e_t + \theta_1 e_{t-1}\) \[\begin{align*} E\Big(Y_t \hspace{2mm} \Big| \hspace{2mm} Y_{t-1}, Y_{t-2}, \ldots, e_{t-1}, e_{t-2}, \ldots\Big) &= E \Big( e_t + \theta_1 e_{t-1} \hspace{2mm} \Big| \hspace{2mm} Y_{t-1}, Y_{t-2}, \ldots, e_{t-1}, e_{t-2}, \ldots\Big) \\\\ &= E ( e_t )+ \theta_1 e_{t-1} \hspace{2mm} = \hspace{2mm} \theta_1 e_{t-1} \end{align*}\]

    Note that \(e_{t-1}\) is not observable.

  • Conditonal variance of MA(1): \(Y_t = e_t + \theta_1 e_{t-1}\) \[\begin{align*} Var\Big(Y_t \hspace{2mm} \Big| \hspace{2mm} Y_{t-1}, Y_{t-2}, \ldots, e_{t-1}, e_{t-2}, \ldots\Big) \ &= Var\Big( e_t + \theta_1 e_{t-1} \hspace{2mm} \Big| \hspace{2mm} Y_{t-1}, Y_{t-2}, \ldots, e_{t-1}, e_{t-2}, \ldots\Big)\\ &= Var( e_t ) \hspace{2mm} = \hspace{2mm} \sigma^2. \end{align*}\]

  • AR(1) \[\begin{align*} \mbox{ Uncond'l } \hspace{20mm} \mbox{ cond'l } \\ E(Y_t) &= 0, \hspace{28mm} E(Y_t|\omega_{t-1}) = \phi_1 Y_{t-1}, \\ Var(Y_t) &= (1+\phi_1^2)\sigma^2 \hspace{10mm} Var(Y_t|\omega_{t-1}) = \sigma^2 \end{align*}\]

  • MA(1) \[\begin{align*} \mbox{ Uncond'l } \hspace{20mm} \mbox{ cond'l } \\ E(Y_t) &= 0, \hspace{28mm} E(Y_t|\omega_{t-1}) = \theta_1 e_{t-1}, \\ Var(Y_t) &= (1+\theta_1^2)\sigma^2 \hspace{10mm} Var(Y_t|\omega_{t-1}) = \sigma^2 \end{align*}\]

  • For ARMA(p,q) model, conditional mean changes, but conditional variance is constant.



Heteroschedasticity

Don’t confuse the conditional heteroscedasticity with (unconditonal) heteroscedasticity:





3. GARCH model


  • GARCH(1,1) model

    \[\begin{align*} Y_t &= \sigma_t e_t \hspace{10mm} e_t \sim_{iid} N(0,1) \\\\ \sigma_t^2 &= \omega + \alpha Y_{t-1}^2 + \beta \sigma^2_{t-1} \end{align*}\]



Conditional Mean and Var of GARCH

  • Conditional Mean: \(0\)

  • Conditional Variance : \(\sigma_t^2\)



__Ex: Daily SPY

Daily Price of SP500 ETF (SPY) from Jan 02 2000 to Dec 31 2014

## [1] "SPY"
## [1] FALSE
## [1] TRUE

##   B-L test H0: the series is uncorrelated
##   M-L test H0: the square of the series is uncorrelated
##   J-B test H0: the series came from Normal distribution
##   SD         : Standard Deviation of the series
##      BL15 BL20 BL25 ML15 ML20 JB    SD
## [1,]    0    0    0    0    0  0 0.011
## 
## Title:
##  GARCH Modelling 
## 
## Call:
##  garchFit(formula = ~garch(1, 1), data = Y, cond.dist = "norm", 
##     include.mean = FALSE, trace = FALSE) 
## 
## Mean and Variance Equation:
##  data ~ garch(1, 1)
## <environment: 0x7ff778c68390>
##  [data = Y]
## 
## Conditional Distribution:
##  norm 
## 
## Coefficient(s):
##      omega      alpha1       beta1  
## 3.7778e-06  1.7597e-01  7.8801e-01  
## 
## Std. Errors:
##  based on Hessian 
## 
## Error Analysis:
##         Estimate  Std. Error  t value Pr(>|t|)    
## omega  3.778e-06   5.531e-07    6.830 8.49e-12 ***
## alpha1 1.760e-01   1.767e-02    9.959  < 2e-16 ***
## beta1  7.880e-01   1.815e-02   43.428  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Log Likelihood:
##  8734.112    normalized:  3.381383 
## 
## Description:
##  Thu Apr  9 15:38:43 2020 by user:
##       AIC       BIC       SIC      HQIC 
## -6.760443 -6.753641 -6.760445 -6.757977



  • GARCH(1,1) model

    \[\begin{align*} Y_t &= \sigma_t e_t \hspace{10mm} e_t \sim_{iid} N(0,1) \\\\ \sigma_t^2 &= \omega + \alpha Y_{t-1}^2 + \beta \sigma^2_{t-1} \end{align*}\]

  • standardized residuals

    \[\begin{align*} \hat \sigma_t^2 &= \hat \omega + \hat \alpha Y_{t-1}^2 + \hat \beta \sigma^2_{t-1} \\ \\ \hat e_t &= \frac{Yt}{\hat \sigma} \end{align*}\]

##   B-L test H0: the series is uncorrelated
##   M-L test H0: the square of the series is uncorrelated
##   J-B test H0: the series came from Normal distribution
##   SD         : Standard Deviation of the series
##       BL15  BL20  BL25  ML15 ML20 JB    SD
## [1,] 0.403 0.272 0.063 0.463 0.74  0 0.998






TS Class Web PageR resource page