Class Web Page



1. Moving Average Filter

For your choice of \(m\), \[ M_t = \frac{1}{2q+1} \sum_{i=-q}^q X_{t+i} \]

This will filter the noise out, exposing overall trend.

It could also be \[ M_t = \frac{1}{q} \sum_{i=0}^q X_{t-i} \]

## Time Series:
## Start = 1 
## End = 6 
## Frequency = 1 
##    X         M
## 1 21        NA
## 2  3 10.333333
## 3  7  9.333333
## 4 18  8.666667
## 5  1 11.000000
## 6 14 10.000000



2. Exponential Smoothing

For your choice of \(\alpha\), \((0<\alpha<1)\), let \(S_0=X_0\) and \[ S_t = \alpha X_t + (1-\alpha) S_{t-1} \hspace{10mm} \mbox{ for } t>0. \]

This can be a one step forecast: \[ \hat X_{t+1} = S_t \]

## Time Series:
## Start = 1 
## End = 6 
## Frequency = 1 
##    X S$fitted
## 1 21  21.0000
## 2  3  21.0000
## 3  7  17.4000
## 4 18  15.3200
## 5  1  15.8560
## 6 14  12.8848