Class Web Page



1. AR(1) model

First order autoregression process, AR(1), is defined as \[ X_t = \phi X_{t-1} + \epsilon_t, \hspace10mm \mbox{ where } \epsilon_t \sim WN(0,\sigma^2) \] and \(\phi\) is real-valued constant.

If \(\phi=.8\), then \[ X_t = (.8) X_{t-1} + \epsilon_t \]

For example, process goes like:

\[ \begin{array}{|c|c|c|c|c|c|c|c|} \hline t & 0 & 1 & 2 & 3 & 4 & 5 \cdots \\ \hline \phi X_{t-1} & & .80 & .91 & 1.26 & 0.28 & \cdots\\ \epsilon_t & & .34 & .66 & -.91 & -.35 & \cdots\\ \hline X_t & 1 & 1.14 & 1.57 & 0.35 & -.07 & \cdots\\ \hline \end{array} \]

Note that \(\epsilon_t\) is the only random error (innovation) generated each time.

Inside AR(1)


Questions:

Is this series stationary? Does \(\phi\) has anything to do with the stationarity?

What is \(E(X_t)\), \(V(X_t)\) and \(\gamma(h)\) of \(\rho(h)\) of this process (ACVF and ACF)?

Mean of AR(1)

If \(\phi=.8\), then \[ E( X_t ) \hspace3mm = \hspace3mm E( (\phi) X_{t-1} + \epsilon_t ) \hspace3mm = \hspace3mm \phi E( X_{t-1} ) + E(\epsilon_t) \]

It will be shown in the next section that \[ E(X_t) = 0 \]

2. Theoretical ACVF of AR(1)

Assume that the AR(1) is stationary. (i.e. \(|\phi|<1\))

What is the theoretical ACVF of AR(1)? Let’s start with variance (\(h=0\)).

\[ \begin{aligned} \gamma(0) &= \mbox{Var}(X_t) \hspace3mm = \hspace3mm \mbox{Cov}(X_t, X_t) \\\\ &= \mbox{Var}(\phi X_{t-1}+\epsilon_t) \hspace20mm \mbox{ (because $X_{t-1}$ and $\epsilon_t$ are independent, ) } \\\\ &= \mbox{Var}(\phi X_{t-1}) + \mbox{Var}(\epsilon_t) \\ \\ &= \phi^2 \mbox{Var}(X_{t-1}) \hspace3mm + \hspace3mm \sigma^2 \hspace3mm = \hspace3mm \phi^2 \, \gamma(0) + \sigma^2 \end{aligned} \]

Given \[ \gamma(0) \hspace3mm = \hspace3mm \phi^2 \, \gamma(0) + \sigma^2, \] solve for \(\gamma(0)\), we get formula for variance of \(X_t\), \[ \gamma(0) \hspace3mm = \hspace3mm \frac{ \sigma^2 }{ (1-\phi^2) }. \]

Do you see what’s wrong if we have \(|\phi|>1\)?

When \(h=1\)

Still assuming the stationarity, let’s look at when \(h\) is not 0, \[ \begin{align} \gamma(1) &= \mbox{Cov}(X_{t+1}, \, X_t) \\ \\ &= \mbox{Cov}\big(\phi \, X_{t} +e_{t+1}, \, \hspace2mm X_t\big) \\ \\ &= \mbox{Cov}\big(\phi \, X_{t}, \, X_t\big) + \mbox{Cov}\big(e_{t+1}, \, X_t\big) \\ \\ &= \phi \, \mbox{Cov}(X_t, X_t) \hspace5mm = \hspace2mm \phi\, \gamma(0) \end{align} \]

When \(h=2\)

\[ \begin{align} \gamma(2) &= \mbox{Cov}(X_{t+2}, \, X_t) \\ \\ &= \mbox{Cov}\big(\phi\, X_{t+1} +e_{t+2}, \, \hspace2mm X_t\big) \\ \\ &= \mbox{Cov}\big(\phi\, X_{t+1}, \, X_t\big) + \mbox{Cov}\big(e_{t+2}, \, X_t\big) \\ \\ &= \phi\, \mbox{Cov}(X_{t+1}, X_t) \hspace5mm = \hspace2mm \phi\, \gamma(1) \hspace5mm = \hspace2mm \phi^2 \gamma(0) \end{align} \]

ACF and ACVF of AR(1)

So the ACVF of AR(1) looks like \[ \gamma(h) = \left\{ \begin{array}{ll} \frac{ \sigma^2 }{ (1-\phi^2) } & \mbox{ for } h=0 \\\\ \phi^{|h|} \, \gamma(0) & \mbox{ for } h>0\\ \end{array} \right. \]

Then since ACF = ACVF \(/\gamma(0)\), \[ \rho(h) = \left\{ \begin{array}{ll} 1 & \mbox{ for } h=0 \\ \phi^{|h|} & \mbox{ for } h>0\\ \end{array} \right. \]

3. Theoretical ACVF in R

Let \(\phi=.8\). i.e. \(\hspace5mm \Phi(z) = 1 - .8 z\)

##  [1] 2.77777778 2.22222222 1.77777778 1.42222222 1.13777778 0.91022222 0.72817778
##  [8] 0.58254222 0.46603378 0.37282702 0.29826162 0.23860929 0.19088744 0.15270995
## [15] 0.12216796 0.09773437 0.07818749 0.06254999 0.05004000 0.04003200 0.03202560
##  [1] 1.00000000 0.80000000 0.64000000 0.51200000 0.40960000 0.32768000 0.26214400
##  [8] 0.20971520 0.16777216 0.13421773 0.10737418 0.08589935 0.06871948 0.05497558
## [15] 0.04398047 0.03518437 0.02814750 0.02251800 0.01801440 0.01441152 0.01152922

##          0          1          2          3          4          5          6 
## 1.00000000 0.80000000 0.64000000 0.51200000 0.40960000 0.32768000 0.26214400 
##          7          8          9         10         11         12         13 
## 0.20971520 0.16777216 0.13421773 0.10737418 0.08589935 0.06871948 0.05497558 
##         14         15         16         17         18         19         20 
## 0.04398047 0.03518437 0.02814750 0.02251800 0.01801440 0.01441152 0.01152922



Summary

  • AR(1) process is defiend by formula \[ X_t = \phi X_{t-1} + \epsilon_t \]

  • Same can be written with characteristic polynomial and backwards operator: \[ (1-\phi B) X_t = \epsilon_t \]

  • \(|\phi|\) needs to be less than 1, for AR(1) process to be stationary.

  • AR(1) has \(E(X_t) = 0\), and \(Var(X_t) = \sigma^2 / (1-\phi^2)\).

  • Theoretical ACF and ACVF of AR(1) are \[ \gamma(h) = \left\{ \begin{array}{ll} \frac{ \sigma^2 }{ (1-\phi^2) } & \mbox{ for } h=0 \\\\ \phi^{|h|} \, \gamma(0) & \mbox{ for } h>0\\ \end{array} \right. \hspace30mm \rho(h) = \left\{ \begin{array}{ll} 1 & \mbox{ for } h=0 \\ \phi^{|h|} & \mbox{ for } h>0\\ \end{array} \right. \]