Class Web Page



1. Parameter Estimation w Yule-Walker


Yule-Walker Equation

We start with AR(p) equation. Let \(p=3\) for now, \[ X_t - \phi_1 X_{t-1} - \phi_2 X_{t-2} - \phi_3 X_{t-3} \hspace3mm = \hspace3mm \epsilon_t. \] We multiply both sides by \(X_t\), and take expectation. \[ E\Big( X_t \, [X_t - \phi_1 X_{t-1} - \phi_2 X_{t-2} - \phi_3 X_{t-3}] \Big) \hspace3mm = \hspace3mm E\Big( X_t \, [ \epsilon_t ]\Big). \]


Recall the formula for covariance, \[ \mbox{Cov}(X_t,X_{t-1}) = E(X_t \, X_{t-1}) - E(X_t)E(X_{t-1}). \] So if \(E(X_t)=0\), then \[ \gamma(1) = E(X_t \, X_{t-1}). \]


Then the equation \[ E\Big( X_t \, [X_t - \phi_1 X_{t-1} - \phi_2 X_{t-2} - \phi_3 X_{t-3}] \Big) \hspace3mm = \hspace3mm E\Big( X_t \, [ \epsilon_t ]\Big). \] can be written as \[ \gamma(0) - \phi_1 \gamma(1) - \phi_2 \gamma(2) - \phi_3 \gamma(3) = \sigma^2 \hspace30mm \mbox{ (Eqn 1) } \]


Now repeat the process starting with \(X_{t+1}\) instead of \(X_t\), \[ X_{t+1} - \phi_1 X_{t} - \phi_2 X_{t-1} - \phi_3 X_{t-2} \hspace3mm = \hspace3mm e_{t+1} \] then we would have gotten \[ E\Big( X_{t} \, [X_{t+1} - \phi_1 X_{t} - \phi_2 X_{t-1} - \phi_3 X_{t-2}] \Big) \hspace3mm = \hspace3mm E\Big( X_t \, [ e_{t+1} ]\Big). \] \[ \gamma(1) - \phi_1 \gamma(0) - \phi_2 \gamma(1) - \phi_3 \gamma(2) \hspace3mm = \hspace3mm 0. \hspace30mm \mbox{ (Eqn 2) } \]


If we use the original AR(3) equation for \(X_{t+2}\) instead of for \(X_t\), we would get \[ E\Big( X_{t} \, [X_{t+2} - \phi_1 X_{t+1} - \phi_2 X_{t} - \phi_3 X_{t-1}] \Big) \hspace3mm = \hspace3mm E\Big( X_t \, [ e_{t+2} ]\Big). \] \[ \gamma(2) - \phi_1 \gamma(1) - \phi_2 \gamma(0) - \phi_3 \gamma(1) \hspace3mm = \hspace3mm 0. \hspace30mm \mbox{ (Eqn 2) } \]


Repeat it one more time, and we get equations, \[ \gamma(0) - \phi_1 \gamma(1) - \phi_2 \gamma(2) - \phi_3 \gamma(3) \hspace3mm = \hspace3mm \sigma^2\\ \\ \gamma(1) - \phi_1 \gamma(0) - \phi_2 \gamma(1) - \phi_3 \gamma(2) \hspace3mm = \hspace3mm 0\\ \gamma(2) - \phi_1 \gamma(1) - \phi_2 \gamma(0) - \phi_3 \gamma(1) \hspace3mm = \hspace3mm 0\\ \gamma(3) - \phi_1 \gamma(2) - \phi_2 \gamma(1) - \phi_3 \gamma(0) \hspace3mm = \hspace3mm 0. \]

We set aside the first equation, and re-write the rest of equations \[ \gamma(1) - \phi_1 \gamma(0) - \phi_2 \gamma(1) - \phi_3 \gamma(2) \hspace3mm = \hspace3mm 0\\ \gamma(2) - \phi_1 \gamma(1) - \phi_2 \gamma(0) - \phi_3 \gamma(1) \hspace3mm = \hspace3mm 0\\ \gamma(3) - \phi_1 \gamma(2) - \phi_2 \gamma(1) - \phi_3 \gamma(0) \hspace3mm = \hspace3mm 0 \] as \[ \phi_1 \gamma(0) + \phi_2 \gamma(1) + \phi_3 \gamma(2) \hspace3mm = \hspace3mm \gamma(1) \\ \phi_1 \gamma(1) + \phi_2 \gamma(0) + \phi_3 \gamma(1) \hspace3mm = \hspace3mm \gamma(2) \\ \phi_1 \gamma(2) + \phi_2 \gamma(1) + \phi_3 \gamma(0) \hspace3mm = \hspace3mm \gamma(3). \] Which can be put in a matrix form as \[ \left[ \begin{array}{cccc} \gamma(0) & \gamma(1) & \gamma(2) \\ \gamma(1) & \gamma(0) & \gamma(1) \\ \gamma(2) & \gamma(1) & \gamma(0) \\ \end{array} \right] \hspace2mm \left[ \begin{array}{c} \phi_1 \\ \phi_2 \\ \phi_3\\ \end{array}\right] = \left[ \begin{array}{c} \gamma(1) \\ \gamma(2) \\ \gamma(3) \\ \end{array} \right]. \]

We still have the first equation, \[ \gamma(0) - \phi_1 \gamma(1) - \phi_2 \gamma(2) - \phi_3 \gamma(3) \hspace3mm = \hspace3mm \sigma^2. \]

These two equations are called Yule-Walker Equations.

Yule-Walker Estimators for AR(p)

For AP(3), Y-W equations are: \[ \gamma(0) - \phi_1 \gamma(1) - \phi_2 \gamma(2) - \phi_3 \gamma(3) \hspace3mm = \hspace3mm \sigma^2 \] \[ \left[ \begin{array}{cccc} \gamma(0) & \gamma(1) & \gamma(2) \\ \gamma(1) & \gamma(0) & \gamma(1) \\ \gamma(2) & \gamma(1) & \gamma(0) \\ \end{array} \right] \hspace2mm \left[ \begin{array}{c} \phi_1 \\ \phi_2 \\ \phi_3\\ \end{array}\right] \hspace3mm = \hspace3mm \left[ \begin{array}{c} \gamma(1) \\ \gamma(2) \\ \gamma(3) \\ \end{array} \right]. \] Which can be soved for \(\phi_i\), \[ \left[ \begin{array}{c} \phi_1 \\ \phi_2 \\ \phi_3\\ \end{array}\right] \hspace3mm = \hspace3mm \left[ \begin{array}{cccc} \gamma(0) & \gamma(1) & \gamma(2) \\ \gamma(1) & \gamma(0) & \gamma(1) \\ \gamma(2) & \gamma(1) & \gamma(0) \\ \end{array} \right] ^{-1} \hspace2mm \left[ \begin{array}{c} \gamma(1) \\ \gamma(2) \\ \gamma(3) \\ \end{array} \right]. \]


We can use Y-W equasion backwards with sample ACVF to estimate parameters. \[ \left[ \begin{array}{c} \hat \phi_1 \\ \hat \phi_2 \\ \hat \phi_3\\ \end{array}\right] \hspace3mm = \hspace3mm \left[ \begin{array}{cccc} \hat \gamma(0) & \hat \gamma(1) & \hat \gamma(2) \\ \hat \gamma(1) & \hat \gamma(0) & \hat \gamma(1) \\ \hat \gamma(2) & \hat \gamma(1) & \hat \gamma(0) \\ \end{array} \right]^{-1} \hspace2mm \left[ \begin{array}{c} \hat \gamma(1) \\ \hat \gamma(2) \\ \hat \gamma(3) \\ \end{array} \right]. \\ \\ \mathbf{\hat \phi_3} \hspace3mm = \hspace3mm \mathbf{ \hat \Gamma^{-1}_3} \hspace2mm \mathbf{\hat \gamma_3} \]

\[ \hat \sigma^2 \hspace3mm = \hspace3mm \hat \gamma(0) - \hat \phi_1 \hat \gamma(1) - \hat \phi_2 \hat \gamma(2) - \hat \phi_3 \hat \gamma(3) \]

Large sample property of Yule-Walker Estimator

\(\sqrt{n}(\hat \phi_p - \phi_p)\) is approximately multivariate normal, \(N_p(0, \sigma^2 \mathbf \Gamma^{-1}/n)\), when \(n\) is large. (B-D p141)


That means 95% confidence interval for \(\phi_{j}\) is \[ \hat \phi_{j} \pm 1.96 \sqrt{ \frac{\hat{\sigma}^2 \, \hat{\Gamma}^{-1}_{jj}}{n} } \] where \(\hat{\Gamma}^{-1}_{jj}\) be \(j\)th diagnal element of the inverse matrix \(\mathbf{\hat{\Gamma}^{-1}}\).

If you use ar() function, $asy.var.coef of an output is same as \(\sigma^2 \mathbf \Gamma^{-1}/n\).

Ex: Testing AR parameters for significance

## 
## Call:
## ar(x = Y, aic = FALSE, order.max = 3)
## 
## Coefficients:
##      1       2       3  
## 0.4824  0.2901  0.0135  
## 
## Order selected 3  sigma^2 estimated as  1.013
## List of 15
##  $ order       : num 3
##  $ ar          : num [1:3] 0.4824 0.2901 0.0135
##  $ var.pred    : num 1.01
##  $ x.mean      : num -0.776
##  $ aic         : Named num [1:4] 70.25 7.21 0 1.98
##   ..- attr(*, "names")= chr [1:4] "0" "1" "2" "3"
##  $ n.used      : int 100
##  $ n.obs       : int 100
##  $ order.max   : num 3
##  $ partialacf  : num [1:3, 1, 1] 0.6915 0.2966 0.0135
##  $ resid       : Time-Series [1:100] from 1 to 100: NA NA NA -0.215 -0.64 ...
##  $ method      : chr "Yule-Walker"
##  $ series      : chr "Y"
##  $ frequency   : num 1
##  $ call        : language ar(x = Y, aic = FALSE, order.max = 3)
##  $ asy.var.coef: num [1:3, 1:3] 0.01041 -0.00507 -0.00309 -0.00507 0.01196 ...
##  - attr(*, "class")= chr "ar"
##              [,1]         [,2]         [,3]
## [1,]  0.010414782 -0.005065612 -0.003089063
## [2,] -0.005065612  0.011962401 -0.005065612
## [3,] -0.003089063 -0.005065612  0.010414782
## Warning in sqrt(Fit2$asy.var.coef): NaNs produced
## [1] 0.48239711 0.29006128 0.01345101
##           [,1]      [,2]      [,3]
## [1,] 0.1020528       NaN       NaN
## [2,]       NaN 0.1093728       NaN
## [3,]       NaN       NaN 0.1020528

##              [,1]         [,2]
## [1,]  0.009498555 -0.006568091
## [2,] -0.006568091  0.009498555



2. Partial ACF

Recall the Yule-Walker Equation, \[ \left[ \begin{array}{c} \phi_1 \\ \phi_2 \\ \phi_3\\ \end{array}\right] \hspace3mm = \hspace3mm \left[ \begin{array}{cccc} \gamma(0) & \gamma(1) & \gamma(2) \\ \gamma(1) & \gamma(0) & \gamma(1) \\ \gamma(2) & \gamma(1) & \gamma(0) \\ \end{array} \right]^{-1} \hspace2mm \left[ \begin{array}{c} \gamma(1) \\ \gamma(2) \\ \gamma(3) \\ \end{array} \right]. \] \[ \mathbf{\phi_3} \hspace3mm = \hspace3mm \mathbf{ \Gamma^{-1}_3} \hspace2mm \mathbf{\gamma_3} \] Note that this equation, can be extended to more than 3 parameters, even though we only have 3 \(\phi\)’s.

For example, if we use \(\mathbf{\Gamma_5}\), then \[ \left[ \begin{array}{c} \phi_1 \\ \phi_2 \\ \phi_3\\ 0\\ 0\\ \end{array}\right] \hspace3mm = \hspace3mm \left[ \begin{array}{ccccc} \gamma(0) & \gamma(1) &\gamma(2) & \gamma(3) & \gamma(4) \\ \gamma(1) & \gamma(0) &\gamma(1) & \gamma(0) & \gamma(3) \\ \gamma(2) & \gamma(1) &\gamma(0) & \gamma(1) & \gamma(2) \\ \gamma(3) & \gamma(2) &\gamma(1) & \gamma(0) & \gamma(1) \\ \gamma(4) & \gamma(3) &\gamma(2) & \gamma(1) & \gamma(0) \\ \end{array} \right]^{-1} \hspace2mm \left[ \begin{array}{c} \gamma(1) \\ \gamma(2) \\ \gamma(3) \\ \gamma(4) \\ \gamma(5) \\ \end{array} \right] \\ \] \[ \mathbf{\phi_5} \hspace3mm = \hspace3mm \mathbf{ \Gamma^{-1}_5} \hspace2mm \mathbf{\gamma_5}. \]

PACF

Partial ACF of lag \(h\) is defined as last element of vector \[ \mathbf{\phi_h} \hspace3mm = \hspace3mm \mathbf{ \Gamma^{-1}_h} \hspace2mm \mathbf{\gamma_h}. \] For AR(p), \[ \left\{ \begin{array}{ll} \alpha(0) = 1 \\ \alpha(h) = \phi_h & \mbox{ if } 1 < h \leq p \\ \alpha(h) = 0 & \mbox{ if } p < h \\ \end{array} \right. \]

PACF of AR(\(p\)) cuts off after lag \(p\).

Sample PACF

Sample version of PACF of lag \(h\) is the last element of \[ \mathbf{\hat \phi_h} \hspace3mm = \hspace3mm \mathbf{ \hat \Gamma^{-1}_h} \hspace2mm \mathbf{\hat \gamma_h}. \] For AR(p), \[ \left\{ \begin{array}{ll} \alpha(0) = 1 \\ \alpha(h) = \phi_h & \mbox{ if } 1 < h \leq p \\ \alpha(h) = 0 & \mbox{ if } p < h \\ \end{array} \right. \]

PACF of AR(\(p\)) cuts off after lag \(p\).

\(\alpha(k)\) is the correlation between prediction errors \[ X_k - \mbox{Pred}(X_h|X_1,\cdots,X_{k-1}) \hspace2mm \mbox{ and } \hspace2mm X_0 - \mbox{Pred}(X_0|X_1,\cdots,X_{k-1}). \]

Summary

  • One method for estimating parameters in AR(\(p\)) is to use .

  • Yule-Walker Estimator make use of relationship between ACVF and AR(\(p\)) parameters.

  • When \(n\) is large, standard error of Y-W estimator can be calculated using large-sample formula.

  • Partial ACF (PACF) is defined on p48 of Cryer. and it is as characteristc of AR(\(p\)) process as ACF.

  • ACF for AR(\(p\)) process decays, as PACF for AR(\(p\)) cuts off after lag \(p\).

  • You can use pacf() function in R to plot PACF.